Robust Face Alignment Using a Mixture of Invariant Experts
نویسندگان
چکیده
Face alignment, which is the task of finding the locations of a set of facial landmark points in an image of a face, is useful in widespread application areas. Face alignment is particularly challenging when there are large variations in pose (in-plane and out-of-plane rotations) and facial expression. To address this issue, we propose a cascade in which each stage consists of a mixture of regression experts. Each expert learns a customized regression model that is specialized to a different subset of the joint space of pose and expressions. The system is invariant to a predefined class of transformations (e.g., affine), because the input is transformed to match each expert’s prototype shape before the regression is applied. We also present a method to include deformation constraints within the discriminative alignment framework, which makes our algorithm more robust. Our algorithm significantly outperforms previous methods on publicly available face alignment datasets. European Conference on Computer Vision (ECCV) This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Copyright c © Mitsubishi Electric Research Laboratories, Inc., 2016 201 Broadway, Cambridge, Massachusetts 02139 Robust Face Alignment Using a Mixture of Invariant Experts Oncel Tuzel, Tim K. Marks, and Salil Tambe 1 Mitsubishi Electric Research Labs (MERL) [email protected], [email protected] 2 Intel Corporation [email protected] Abstract. Face alignment, which is the task of finding the locations of a set of facial landmark points in an image of a face, is useful in widespread application areas. Face alignment is particularly challenging when there are large variations in pose (in-plane and out-of-plane rotations) and facial expression. To address this issue, we propose a cascade in which each stage consists of a mixture of regression experts. Each expert learns a customized regression model that is specialized to a different subset of the joint space of pose and expressions. The system is invariant to a predefined class of transformations (e.g., affine), because the input is transformed to match each expert’s prototype shape before the regression is applied. We also present a method to include deformation constraints within the discriminative alignment framework, which makes our algorithm more robust. Our algorithm significantly outperforms previous methods on publicly available face alignment datasets. Face alignment, which is the task of finding the locations of a set of facial landmark points in an image of a face, is useful in widespread application areas. Face alignment is particularly challenging when there are large variations in pose (in-plane and out-of-plane rotations) and facial expression. To address this issue, we propose a cascade in which each stage consists of a mixture of regression experts. Each expert learns a customized regression model that is specialized to a different subset of the joint space of pose and expressions. The system is invariant to a predefined class of transformations (e.g., affine), because the input is transformed to match each expert’s prototype shape before the regression is applied. We also present a method to include deformation constraints within the discriminative alignment framework, which makes our algorithm more robust. Our algorithm significantly outperforms previous methods on publicly available face alignment datasets.
منابع مشابه
Face Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملPose - Invariant Face Recognition with Parametric Linear
We present a framework for pose-invariant face recognition using parametric linear subspace models as stored representations of known individuals. Each model can be t to an input, resulting in faces of known people whose head pose is aligned to the input face. The model's continuous nature enables the pose alignment to be very accurate, improving recognition performance, while its generalizatio...
متن کاملPose Normalization for Robust Face Recognition Based on Statistical Affine Transformation
A framework for pose-invariant face recognition using the pose alignment method is described in this paper. The main idea is to normalize the face view in depth to frontal view as the input of face recognition framework. Concretely, an inputted face image is first normalized using the irises information, and then the pose subspace algorithm is employed to perform the pose estimation. To well mo...
متن کاملGender Recognition Based on Sift Features
This paper proposes a robust approach for face detection and gender classification in color images. Previous researches about gender recognition suppose an expensive computational and time-consuming pre-processing step in order to alignment in which face images are aligned so that facial landmarks like eyes, nose, lips, chin are placed in uniform locations in image. In this paper, a novel techn...
متن کاملDUGMA: Dynamic Uncertainty-Based Gaussian Mixture Alignment
Registering accurately point clouds from a cheap low-resolution sensor is a challenging task. Existing rigid registration methods failed to use the physical 3D uncertainty distribution of each point from a real sensor in the dynamic alignment process mainly because the uncertainty model for a point is static and invariant and it is hard to describe the change of these physical uncertainty model...
متن کامل